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The behavior of a two-dimensional system of particles interacting through a potential consisting of a hard
core surrounded by a soft repulsive corona is investigated at several densities and temperatures. We find that
the competition between hard and soft repulsions gives origin to the spontaneous formation of spatial patterns
resembling stripe textures. The effect of varying the hard and soft core radii ratio as well as that of adding an
attractive component to the interparticle interaction is studied. The model investigated is relevant for macro-
molecular topologies possessing two intrinsic length scales.
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I. INTRODUCTION

Spontaneous formation of stripe phases often occurs in
two-dimensional systems as the result of self-organization
processes. Materials showing such behavior include Lang-
muir monolayers[1], magnetic films[2], lipid monolayers
[3], liquid crystals[4], polymer films[5], etc. Possible tech-
nological applications of such nanostructures as nanolithog-
raphy and nanoelectricity, motivate interest in studying the
physical mechanisms underlying the phenomenon. Stripe
formation is usually attributed to the competition between
short-range attractive forces and long-range repulsion arising
from dipole interactions[6,7]. Recently, however, it was
shown through numerical simulation that stripe phases may
arise also in the presence of purely repulsive short-ranged
interactions with two characteristic distances[8]. Such fea-
ture is present in physical systems with core-corona architec-
ture, such as dendritic polymers, hyper-branched star poly-
mers, diblock copolymers, etc., which are characterized by
two repulsive length scales, related to the hard and soft re-
pulsions, respectively. For instance, diblock copolymers sus-
pended in decane[9] self-assemble to produce soft spherical
micelles with a dense core and a diffuse corona. By varying
the degree of polymerization or the aggregation number, it is
possible to tune the length scale of each block. A similar
topology characterizes another family of macromolecules re-
cently synthesized, i.e., dendrimer compounds consisting of
a compact poly(benzylether) core segment decorated with a
diffuse corona of dodecyl chains[10]. These dendrimers self-
assemble in spherical micelles with a compact core of ben-
zylether rings and a floppy, squishy corona of alkaly chains.
The interaction between core-corona micelles is primarily
steric, i.e., repulsive and short-range. The micellar architec-
ture suggests that the potential is characterized by three re-
gimes. At large distances, the micelles do not overlap and the
interaction vanishes. As the coronas begin to overlap, the
entropy of the brush-like coronas decreases, which gives rise
to an effective soft repulsion between the micelles. Finally, at
small separations penetration of compact cores is very unfa-
vorable and gives rise to hard-core repulsion. This picture is
in qualitative agreement with recent, detailed molecular dy-
namics simulations[11].

The effectiveness of each length scale depends on the
thermodynamic conditions. At large pressure and tempera-

ture the effective repulsive distance is the hard-core radius,
whereas at small pressure and temperature the effective re-
pulsive distance is the soft-core radius. Between these two
regimes there is a thermodynamic region in which the two
distances are both partially effective. This subtle form of
competing interactions may yield domain formation. Here
we continue and extend the investigation, begun in Ref.[8],
of the behavior of a two-dimensional(2D) system of par-
ticles consisting in a hard core and a soft repulsive corona.
We find that at densities where the hard and soft core radii
compete with each other, the system undergoes, upon de-
creasing the temperature, a transition to a lamellar or laby-
rinthine phase. This behavior is substantially unaltered by
variations of the two repulsive distances, at least so far as
they remain comparable, and is robust upon the introduction
of an attractive component in the interaction potential.

II. MODEL AND METHODS

Core-corona architectures may be modeled through inter-
molecular potentials with a hard core plus a repulsive shoul-
der(softened-core potentials). The infinite repulsion is due to
the impenetrability of the electronic shells. The finite repul-
sion represents the combination of all the quantum and clas-
sical repulsive effects averaged over the angular part.
Softened-core potentials with attractive interactions at large
distances were first proposed by Stell and Hemmer[12] to
understand the possibility of a solid-solid critical point in
materials as Ce and Cs. Similar potentials were later used to
rationalize the properties of liquid metals, alloys, electro-
lytes, colloids, and the water anomalies[13–24].

Here we consider a model system of particles interacting
through a purely repulsive radially symmetric pair potential
Usrd which consists of an impenetrable hard-core of diam-
eters0 plus a repulsive square shoulder of finite height(soft
core) extending tor =s1:

Usrd = 5` for r , s0

UR for s0 ø r , s1

0 for s1 ø r ,
6 s1d

where r is the pair distance andUR.0 is the finite(soft-
core) repulsive energy. Our model potential presents two
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characteristic short-range repulsive distances:s0, associated
with the hard-core exclusion between two particles, ands1,
associated with the weak repulsion generated by the soft
core. Choosings0 andUR as length and energy units, respec-
tively, our model depends only on one parameter, i.e., the
ratio R=s1/s0. We initially chooseR=2.5.

Monte Carlo(MC) calculations are performed with a stan-
dard Metropolis algorithm in a square box with square peri-
odic boundaries.NVT simulations are performed withN
=1000 particles(check runs withN=2000, 4000 were also
done with no significant changes in the quantities moni-
tored). Equilibration cycles consist, for each thermodynamic
state, of at least 106 MC steps(each step consisting of an
attempt to move all the particles, acceptance rate between 0.4
and 0.5). The structure factor is calculated as the Fourier
transform of the density-density correlation function through
cumulation runs of 23104–105 MC steps(depending on the
density). NPTsimulations are performed withN=500(check
runs withN=1000 were done with no significative changes
in the quantities monitored).

III. GEOMETRICAL ANALYSIS

The phase diagram of the model considered is expected to
be characterized by multiple crystalline structures[23]. It is
then useful to perform a preliminary analysis of the possible
structural arrangements of the system. AtT=0 the thermo-
dynamically stable configuration of the system is the one
which minimizes the enthalpy. However, it is not possible to
safely identify, for each pressure, the structure of lowest en-
thalpy. The usual approach is to compare the enthalpies of
different structures(cubic, tetragonal, hexagonal, etc.) using
simulated annealing techniques to guess the possible crystal-
line lattices. Here, we use geometrical considerations to rap-
idly figure out which are the relevant densities for the sys-
tem, although a close correspondence with finite temperature
configurations should not be necessarily expected. The dif-
ferent packing geometries can be classified according to the
relevant crystal lattice(square, rectangular, or triangular); we
will further distinguish among rectangular lattices according
to the lattice parametersd' anddi, where the suffixes stand
for perpendicular and parallel to the stripe direction, respec-
tively. The basic elements may be simple particles, dimers
(couples of particles with touching hard cores and partially
overlapping coronas), trimers (triplets of particles whose
hard cores are in contact with each other).

Figure 1 illustrates a number of configurations that can be
realized by the system at different densities(in the following,
density is expressed in units of 1/s0

2). Figure 1(a) shows a
square lattice of particles(d'=di=s1, r=ss0/s1d2=0.16).
Figure 1(b) shows a triangular lattice of particles(r
=s2Î3/3dss0/s1d2<0.184[25]). This is the densest arrange-
ment attainable without interpenetration of coronas. Figure
1(c) shows a rectangular lattice of dimers
(d'=s1, di=s1+s0, r=2s0

2/ fs1ss0+s1dg=0.228). The soft
core of any dimer is in contact, with no overlapping, with the
soft cores of adjacent dimers. Figure 1(d) shows a rectangu-
lar lattice of dimers (d'=s1; di=ss1+3s0d /2, r
=4s0

2/ fs1s3s0+s1dg=0.291). Along the axis, dimers’ soft

cores overlap, the edge of the soft core of any dimer being in
contact with the hard core of the closest particle of the adja-
cent dimer. In direction orthogonal to the dimer axis the soft
cores of adjacent dimers are in contact with no overlapping.
Figure 1(e) shows a triangular lattice of trimerssr
=2Î3s0

2/ fÎs1
2−ss0/2d2+Îs0

2−ss0/2d2g=0.315d. The soft
core of each trimer is in contact with the soft cores of sur-
rounding trimers, with no overlapping. Figure 1(f) shows a
square lattice of dimers(d'=di=s1, r=2ss0/s1d2=0.32).
Along the axis, dimers’ soft cores overlap, the edge of the
soft core of any dimer being in contact with the edge of the
corona of the less close particle of the adjacent dimer. A
different arrangement is possible at the same density, namely
the rectangular lattice of particles shown in Fig. 1(g) (d'

=s1; di=s1/2). In this case, particles are disposed along
parallel lines, the corona of each particle overlapping with
the coronas of adjacent particles within the same line, with
its edge in contact with the edge of the coronas of the
second-neighbors particles. The coronas of particles belong-
ing to adjacent lines are in contact with no overlapping. Fig-
ure 1(h) shows a rectangular lattice of particles
(d'=s1; di=s0, r=s0/s1=0.4). The hard core of each par-
ticle is in contact with the hard cores of adjacent particles
within the same line, while the coronas of particles belong-
ing to adjacent lines are in contact with no overlapping. This
is the densest configuration attainable without overlapping of
coronas in a direction perpendicular to the line on which
particles are disposed.

Some of the configurations illustrated are specific of the
adopted choice ofs0 and s1. For example forR=2, the
arrangements shown in Figs. 1(f) and 1(h) coincide.

IV. RESULTS AND DISCUSSION

MC simulations at constant number of particlesN, vol-
ume V, and temperatureT (NVT simulations) [26] showed
[8] that at a fixed temperature, upon increasing the density,
the system rapidly turns from a disordered configuration into
a triangular lattice with few defects and lattice constants1;
then particles form dimers together with few short linear
chains. Subsequently, dimers and particles align in worm-
like filaments and eventually form stripe domain patterns
similar to those exhibited by 2D real systems[27–29], while
at even higher densities, the system is composed mainly of
loose aggregates of three or more particles. The packing frac-
tions at which these arrangements appear[8] are generally in

FIG. 1. Geometrical arrangements corresponding to densities:
from left to right—(a) r=0.16; (b) 0.184;(c) 0.228;(d) 0.291;(e)
0.315;(f) 0.32; (g) 0.32; (h) 0.4.
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good agreement with those estimated from the previous geo-
metrical analysis.

In particular, atr=0.291, the system exhibits remarkable
stripe domains. In order to better understand the mechanism
that leads to this intriguing feature, we investigated the stripe
formation process at this density through an accurate anneal-
ing procedure: the system is initially disordered at high tem-
perature and then brought fromT=0.3 to 0.2 with tempera-
ture steps of 0.025 and fromT=0.2 to 0.15 with steps of
0.01.

Figure 2 shows snapshots taken at several temperatures
along the annealing isochore. AsTs is approached from
above, particles gradually dispose themselves so to form
winding filaments [T=0.19, Fig. 2(c)]. At a temperature
Tss0.18,Ts,0.19d, the system undergoes a rather sharp
transition from a disordered state to a lamellar phase. AtT
=0.18 particles form nearly perfectly parallel straight stripes
which span the whole system[Fig. 2(d)]. Upon further cool-
ing, the few residual defects gradually disappear[Figs. 2(e)
and 2(f)].

The pair distribution functiongsrd, shown in Fig. 3, illus-
trates clearly that at the transition a relatively long-range
order appears. In fact, belowTs, the distribution function is
characterized by the persistence of the secondary peaks,
which decrease much more slowly than in the disordered
phase. We further analyze the structural order of our system
through the structure factorSskd, a quantity which represents
a measure of density correlations in the wave vector space.
The positionkmax of the main peak of the structure factor
provides an estimate of the length scaleL which character-
izes the structural order of the systemskmax<2p /Ld. As
shown in Fig. 4, the first and the second peak, centered,
respectively, at k*2p /s1 and at k*2p /s, with

s0,s,s1, increase considerably below the transition to the
stripe phase. In particular, the growth of the second peak
reveals that, in addition tos1, a new length scale, smaller
than s1 but larger thans0, becomes effective belowTs. To
interpret this result one must consider that at low tempera-
tures, provided density is not too high, coronas are scarcely
penetrable and the system behaves as an assembly of hard
disks of effective diameters1, with the ensuing dominance
of the first peak. However, at the density considered, there is
not enough space to accommodate all particles without inter-
penetrating of coronas. In fact, the low temperature stripe
phase is characterized by penetration of the soft core along
the stripes. The effective repulsive lengths are then the inner
hard core in direction parallel to the stripes and the external
corona radii in direction orthogonal to them. From the con-
sequent competition between these two scales an intermedi-
ate effective length scale emerges, as reflected in the growth,
in the structure factor, of the peak centered atk*2p /s.

The self-organization principle which underlies the for-
mation of the patterns observed is strictly related to the form
of the interaction potential. In the presence of pure excluded
volume interactions, the structural arrangement of the par-
ticles is driven by the requirement of maximizing the con-
figurational entropy. An example is provided by crystalliza-
tion of hard spheres. This system forms a stable HCP crystal.

FIG. 2. Snapshots showing spatial configurations atr=0.291
and several temperatures. Left column, bottom to top:(a) T=0.25;
(b) 0.20; (c) 0.19. Right column, top to bottom:(d) 0.18; (e) 0.17;
(f) 0.15.

FIG. 3. Pair distribution functiongsrd at r=0.291 andT=0.25
(dashed line), 0.19 (dot-dashed line), 0.18 (dotted line), 0.15 (full
line).

FIG. 4. Structure factorsSskd at r=0.291 andT=0.25 (dashed
line), 0.19 (dot-dashed line), 0.18 (dotted line), 0.15 (full line).
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The solid phase has a greater entropy with respect to the fluid
one: in fact an ordered structure such as the HCP crystal
ensures that each particle has around itself enough space to
sample through vibrational motions. As a consequence, in
the solid phase a greater number of microstates is available
to the system with respect to a disordered fluid phase(at the
same density).

When the hard core is dressed with a soft shoulder, as in
our case, the system has to obey, together with the maximum
entropy rule, also a minimum energy requirement. In fact,
when particles come sufficiently close, soft shoulders over-
lap: this implies an energetic cost which the system tries to
minimize. If density is low, the system can satisfy both the
maximum entropy and minimum energy rules simply by ar-
ranging particles on an ordered lattice in which they are at a
distance from each other such that there is no overlapping of
shoulders. At higher density(in our model, whenr.0.184,
reduced units) this is no more possible. It is easy to realize
that in this case a structure in which particles are equally
spaced from each other wouldmaximizethe energetic cost
for the system since the shoulder of each particle overlaps
with those of all its nearest neighbors. Alignment of the par-
ticles (and at smaller densities, formation of dimers) allows
one to minimize the number of overlaps and, accordingly, the
energetic cost of the configuration. In these conditions, the
spatial arrangement of the particles in our model is deter-
mined by a tradeoff between the two incompatible require-
ments of maximizing entropy and minimizing energy
[30,31]. The deriving unavoidable frustration may have re-
markable consequences. In particular, in the stripe configu-
ration, in spite of the isotropic nature of the interaction pair
potential, the soft repulsion is easily overcome along the
stripes but not transversally to them. Thus, coronas act as
efficient spacers between stripes, setting the pattern period-
icity, but not between particles within the same stripe.

To check the robustness of the transition to the stripe
phase, we performed an annealing procedure using also MC
simulations at constant number of particles, temperature, and
pressureP (NPT simulations) [26]. This simulation scheme
allows volume to fluctuate and during the annealing proce-
dure, at difference fromNVT simulations, volume(or den-
sity) changes to keep pressure constant(in our calculations
pressure is chosen so that aroundTs the average density is
close to 0.29). The results obtained, not reported here for
brevity, show that aroundTs the system undergoes a transi-
tion to an orientationally ordered phase in which particles are
localized along linear domains. These results are in substan-
tial agreement with our previous findings and confirm the
formation of the stripe phase at low temperature.

V. DEPENDENCE ON POTENTIAL PARAMETERS

As discussed above, the essential feature responsible for
stripe formation is, in our system, the competition between
the hard and soft repulsions. Thus, we expect that the phe-
nomenon keeps unaltered, at least qualitatively, also for dif-
ferent choices of the ratio between the hard and soft cores,
provided that these two length scales are comparable with
each other. To assess this point we investigate the behavior of

our model for several values ofR, with Rù2. Here we report
the results relative toR=2; this choice is of particular inter-
est since for this value ofR a number of relevant configura-
tions collapse into each other(as observed in Sec. II). The
smaller soft core makes possible a tighter packing with re-
spect to our previous choice. In particular, the geometrical
arrangement shown in Fig. 1(d) corresponds now to the den-
sity r=0.4. We expect then that formation of stripes occurs at
higher densities.

We performNVT simulations atr=0.4–0.45 andT=0.1,
disordering first the system at high temperature and then
bringing it to the final temperature through three successive
stepssT=0.3,0.2,0.1d. We find that the spatial disposition
(shown in Fig. 5) is characterized by the presence of winding
filaments, similar to those exhibited atr=0.291 by the sys-
tem with R=2.5 [see Fig. 2(d) of Ref. [8]].

Up to now we considered purely repulsive intermolecular
interactions. However, attraction is often present, to a smaller
or greater extent, in real systems due, for example, to disper-
sive terms or to depletion forces arising in mixtures of suf-
ficiently asymmetric particles. Thus, a fundamental question
is whether the formation of stripes occurs also in the pres-
ence of attraction. We introduce in the interparticle potential
(for several radii ratios) an attractive component having the
form of a well extending fromr =s1 to r =s1+s0/2, with a
number of attractive energiessUA=0.25,0.5d. Here we show
the results forR=2. The system withUA=0 is first disor-
dered at high temperature and then brought toT=0.3. Then
attraction is progressively switched on. As shown in Fig. 6,
attraction favors alignment of the particles. In fact, the tran-
sition to the stripe phase occurs at higher temperatures with
respect to the purely repulsive interaction, the general fea-
tures of the phenomenon being qualitatively unaltered.

Attraction appears then to enhance the capacity of the
shouldered repulsive core to generate stripe patterns. This
effect can be explained by considering that, at least for suf-
ficiently dense configurations, the presence of attraction
gives origin to a sort of line tension which stabilizes the
stripes. On the microscopic side, the presence of the attrac-
tive well increases the average number of particles in the
vicinity of the core(as shown by the radial distribution func-
tion reported in Fig. 7). This makes possible the penetration
of the soft core, and thus the formation of stripes, at signifi-
cantly higher temperatures. The robustness of stripe forma-
tion with respect to attractive forces widens considerably the
applicability of the present analysis.

FIG. 5. Snapshots showing spatial configurations forR=2 at T
=0.1: left to right—(a) r=0.4; (b) 0.45.
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VI. CONCLUSIONS

We showed that 2D systems with core-corona architecture
may spontaneously form stripe patterns. The physical mecha-
nism underlying this phenomenon is to be found in the com-
petition between the two length scales that characterize the
repulsive component of the intermolecular interaction. The

choice of the ratio between the hard and soft cores is not
critical provided that they are comparable with each other.
Thus, our findings are only weakly dependent on the specific
choice of the model parameters, which enhances the rel-
evance of the present study to real systems. We showed also
that the stripe formation process is robust upon the introduc-
tion of an attractive component. Thus, core-corona potentials
in the presence of attraction may give origin to stripe phases
and to liquid-liquid first-order transitions[22], both unusual
phenomena in simple model fluids. In the light of this result,
a systematic investigation of the relation between the two
phenomena in 2D real systems would be highly advisable.
Indeed, some experimental results point in this direction,
e.g., mixtures of lipids in monolayers, which exhibit stripe
phases near a miscibility critical point[3].

In order to better understand the behavior of our model
system a full knowledge of its phase diagram is necessary.
We plan to undertake such an investigation in the near future.
The results here reported open the possibility that a novel
class of materials may be suited for the self-assembling of
nanoscale structures. This technique may have many far-
reaching technological applications. For example one day it
could allow electronic devices to assemble themselves auto-
matically, giving a way to mass-produce nanochips with cir-
cuit elements only a few molecules across.
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